

941

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Autonomic Computing: An Evidence of Better Management Autonomic Computing: An Evidence of Better Management Autonomic Computing: An Evidence of Better Management Autonomic Computing: An Evidence of Better Management

TechnologyTechnologyTechnologyTechnology

Amadin, F. I. & Obienu A. CAmadin, F. I. & Obienu A. CAmadin, F. I. & Obienu A. CAmadin, F. I. & Obienu A. C

Department of Computer Science

University of Benin

P.M.B. 1154, Benin City. Nigeria.

frankamadin@uniben.edu, and obienuac@gmail.com

ABSTRACTABSTRACTABSTRACTABSTRACT

The increasing complexity, heterogeneity, dynamism and interconnectivity in software applications,

services and networks has led to complex, unmanageable and insecure systems. This complexity has

increased the cost and errors of managing information technology infrastructures, as well as,

threatens to undermine the benefits information technology aims to provide. All these issues has

necessitated the search for an alternate paradigm of system and application design, which can based

on biological systems strategies, to deal with similar challenges of scale, complexity, heterogeneity,

and uncertainty – a vision that has been referred to as Autonomic Computing. Autonomic

Computing is a new innovation that is gaining awareness and acceptance in several fields due to its

practical relevance in computing systems improvement. This paper presents an overview to

autonomic computing, its architecture, examples, and promises to future applications.

KeywordsKeywordsKeywordsKeywords: Architecture, Autonomic Element, Managed Elements, Multi-Agent Systems, Software

SMARTSMARTSMARTSMART----SMARTSMARTSMARTSMART----iSTEAMS Conference Proceedings Paper Citation Format iSTEAMS Conference Proceedings Paper Citation Format iSTEAMS Conference Proceedings Paper Citation Format iSTEAMS Conference Proceedings Paper Citation Format

Amadin, F. I. & Obienu A. C (2018): Autonomic Computing: An Evidence of Better Management

Technology. Proceedings of the SMART-iSTEAMS Multidisciplinary Conference, February, 2018, Ogwuashi-

uku, Delta State, Nigeria. Pp 941-954

1. 1. 1. 1. BACKGROUND TO THE STUDYBACKGROUND TO THE STUDYBACKGROUND TO THE STUDYBACKGROUND TO THE STUDY

The advent and evolution of networks and internet, which has delivered ubiquitous services

with extensive scalability and flexibility, continues to make computing environments more

complex [1]. Moreover, advances in networking and computing technology and software

tools have resulted in an explosive growth in networked applications and information

services that cover all aspects of our life [2]. However, these sophisticated applications and

services are extremely complex, heterogeneous and dynamic. This increasing complexity is

overwhelming the capabilities of software developers and system administrators, who

design, evaluate, integrate, and manage these systems [3]. Several researchers such as [4]

are of the opinion that for a technology to be truly successful, its complexity has to

disappear. Currently, several computing systems include complex infrastructures and

operate in complex heterogeneous environments.

With the proliferation of handheld devices, the ever-expanding spectrum of users, and the

emergence of the information economy with the advent of the web, computing vendors

have difficulty providing an infrastructure to address all the needs of users, devices, and

applications. Service-Oriented Architecture with Web services as their core technology try

to address some of this issues, hereby raising numerous complexity issues [5].

942

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Information Technology (IT) is called upon to deliver business services at higher speed

and minimum cost. These services must be integrated into the existing infrastructures

which lead to increase in complexity. Today, IT organizations face severe challenges in

managing these complexities due to cost, time and relying mainly on human experts. This

growing complexity of the IT infrastructure threatens to undermine the benefits IT aims to

provide [6]. According to [7], the labour costs outstrip equipment by factors of 3 to 18,

depending on the type of system, and one third to one half of the total budget is spent

preventing or recovering from crashes. This necessitated IT managers to look for ways to

improve the return on investment by reducing the total cost of ownership, improving

quality of services and reducing the cost for managing of IT complexity– a vision that has

been referred to as autonomic computing [8].

By attacking the software complexity problem through technology simplification and

automation, autonomic computing promises to solve software evolution problems [5]. This

research provides an overview of the autonomic environment and discusses some of the

possibilities regarding how this technology might be able to adapt to changes in the evolving

software crises and to take advantage of technology to better accomplish the needs of

software developers. So, by embedding autonomic principles into existing system

architecture, we can move one step further to achieving success.

2.2.2.2. CONTEMPORARYCONTEMPORARYCONTEMPORARYCONTEMPORARY COMPUTINGCOMPUTINGCOMPUTINGCOMPUTING

Over the past era, the expeditious surge in computer technology has helped to produce

more strained hardware and software applications. As a result, long term feasibility and

sustainability are usually ignored which, results in “ball-of-mud‟ applications where

peripherals have been added in a continued manner without paying any sort of attention to

the resulting complex system integrity [9].The increase in the number of IT professionals is

directly proportional to optimizing level of system complexity [10]. However, the rampant

growth of information systems involves more than expected cost of computer system

components, so there is a lot of resource wastage.

Moreover, the increasing heterogeneity, dynamism and interconnectivity in software

applications, services and networks led to complex, unmanageable and insecure systems.

This problem poses a great challenge for both science and industry because the increasing

complexity of computing systems makes it more difficult for the IT staff to deploy, manage

and maintain such systems. This dramatically increases the cost of management.

Furthermore, if not properly and timely managed, the performance of the system may

drop or the system may even fail.

Another drawback of increasing complexity is that it forces us to focus more on handling

management issues instead of improving the system itself and moving forward towards new

innovative applications. Autonomic computing focus on tackling the problem of growing

software complexity. Autonomic systems are designed to take over routine, repetitive and

manually intensive IT operations tasks that IT professionals choose to delegate [11].

943

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

3.3.3.3. AUTONOMICAUTONOMICAUTONOMICAUTONOMIC COMPUTINGCOMPUTINGCOMPUTINGCOMPUTING

In 2001, Paul Horn from IBM coined the term Autonomic Computing (AC) to mark the

start of a new paradigm of computing [10]. Autonomic Computing (AC) is a paradigm that

aims at reducing administrative overhead by using autonomic managers to make

applications self-managing. Autonomic computing was inspired from the autonomic

nervous system that continuously regulates and protect our bodies subconsciously [12]

leaving us free to focus on other work. Similarly, an autonomic system should be aware of

its environment and continuously monitor itself and adapt accordingly with minimal human

involvement. Human managers should only specify higher level policies that define the

general behaviour of the system. This will reduce the cost of management, improve

performance, and enable the development of new innovative applications. Thus purpose of

autonomic computing is not to replace humans entirely but rather to enable systems to

adjust and adapt themselves automatically to reflect evolving policies defined by humans.

AC conceals the complexity of design and management in system equipment. Autonomic

Elements (AEs) are the basic building blocks of autonomic systems and their interactions

produce self-managing behavior. We can consider Autonomic Elements as software agents

and Autonomic computing systems as multi-agent systems. Each Autonomic element has

two parts: Managed Element and Autonomic Manager. In fact, Autonomic Computing

Systems are established from Managed Elements whose behaviors are controlled by

Autonomic Managers. Autonomic Managers execute according to the administrator

policies and implement self-management. Managed Element is a component from system.

It can be hardware, application software, or an entire system. Sensors retrieve information

about the current state of the Managed Element and then compare it with expectations that

are held in knowledge base by the Autonomic Elements. The required action is executed

by effectors. Therefore, sensors and effectors are linked together and create a control loop.

Autonomic Managers are the second part of an Autonomic Elements. An Autonomic

Manager uses a manageability interface to monitor and control the Managed Element. It

has four parts: monitor, analyze, plan, and execute, as shown in figure 1.

The Monitor part provides mechanisms to collect information from a Managed Element,

monitor it, and manage it. Monitored data is analyzed. It helps the Autonomic Manager to

predict future states. Plan uses policy information and what is analyzed to achieve goals.

Policies can be a set of administrator ideas and are stored as knowledge to guide

Autonomic Manager. Plan assigns tasks and resources based on the policies, adds,

modifies, and deletes the policies [13]. Autonomic Managers can change resource

allocation to optimize performance according to the policies. Finally, the execute part

controls the execution of a plan and dispatches recommended actions into Managed

Element. These four parts provide control loop functionality. Communications between

Autonomic Managers provide self-managing and context-awareness.

944

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Figure 1: Autonomic Element Figure 1: Autonomic Element Figure 1: Autonomic Element Figure 1: Autonomic Element [14[14[14[14].].].].

All these different modules share same knowledge through resource details, change exploit

policies based on environment plans. External behavior of Autonomic Elements is related

to relationships among them. There exist self-managed architectures for sensors and

handheld devices [15]. Figure 2 shows detailed architecture of Autonomic Elements in an

Autonomic Computing environment. Autonomic Managers can be linked together via an

autonomic signal channel.

4.4.4.4. ATTRIBUTESATTRIBUTESATTRIBUTESATTRIBUTES OFOFOFOF AUTONOMICAUTONOMICAUTONOMICAUTONOMIC SYSTEMSSYSTEMSSYSTEMSSYSTEMS

The properties that a system should have to constitute autonomicity are depicted in Figure

3. These properties of an autonomic (self-managing) system can be summarised into four

objectives: self-configuring, self-healing, self-optimising and self-protecting. An autonomic

system can self-configure at runtime to meet changing operating environments, self-tune to

optimize its performance, self-heal when it encounters unexpected obstacles during its

operation, and—of particular current interest—protect itself from malicious attacks. Research

and development teams concentrate on developing theories, methods, tools, and technology

for building self-healing, self-configuring, self-optimizing, and self-protecting systems.

945

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Figure 2: Autonomic Element architecture [16].Figure 2: Autonomic Element architecture [16].Figure 2: Autonomic Element architecture [16].Figure 2: Autonomic Element architecture [16].

1.1.1.1. SelfSelfSelfSelf----configuringconfiguringconfiguringconfiguring

Self-configuring systems provide increased responsiveness by adapting to a dynamically

changing environment. A self-configuring system must be able to configure and reconfigure

itself under varying and unpredictable conditions. Varying degrees of end-user involvement

should be allowed, from user-based reconfiguration to automatic reconfiguration based on

monitoring and feedback loops [17], [18]. For example, the user may be given the option

of reconfiguring the system at runtime; alternatively, adaptive algorithms could learn the

best configurations to achieve mandated performance or to service any other desired

functional or nonfunctional requirement.

Variability can be accommodated at design time (e.g by implementing goal graphs) or at

runtime (e.g, by adjusting parameters). Systems should be designed to provide

configurability at a feature level with capabilities such as separation of concerns, levels of

indirection, integration mechanisms (data and control), scripting layers, plug and play, and

set-up wizards. Adaptive algorithms have to detect and respond to short-term and long-term

trends.

2.2.2.2. SelfSelfSelfSelf----optioptioptioptimizingmizingmizingmizing

Self-optimizing is the capability to efficiently maximize resource allocation and utilization

for satisfying requirements of different users. Resource utilization and workload

management are two important aspects necessitate for such a characteristic. One of the

common models used in resource utilization is utility function [19]. Existing technologies in

the workload management aspect, such as logical partitioning and dynamic server

clustering, should be extensible to heterogeneous systems.

946

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

In this way, a single collection of computing resources will be provided which is

manageable by a “logical" workload manager across the enterprise [20]. While in a short

term, self-optimizing can address the complexity of managing system performance, in a

long run its components will automatically and proactively seek ways to tune their

operation, and make themselves more efficient in cost [17].

3. 3. 3. 3. SelfSelfSelfSelf----healinghealinghealinghealing

Self-healing systems provide resiliency by discovering and preventing disruptions as well as

recovering from malfunctions. Such a system will be able to recover—without loss of data or

noticeable delays in processing—from routine and extraordinary events that might cause

some of its parts to malfunction. Self-recovery means that the system will select, possibly

with user input, an alternative configuration to the one it is currently using and will switch to

that configuration with minimal loss of information or delay. The main objective of self-

healing is to maximize availability, survivability, maintainability and reliability of the system

[20].

Figure 3: Autonomic Computing AttributesFigure 3: Autonomic Computing AttributesFigure 3: Autonomic Computing AttributesFigure 3: Autonomic Computing Attributes

4. 4. 4. 4. SelfSelfSelfSelf----protectingprotectingprotectingprotecting

Self-protecting systems secure information and resources by anticipating, detecting, and

protecting against attacks. Such a system will be capable of protecting itself by detecting and

counteracting threats through the use of pattern recognition and other techniques [17].

This capability means that the design of the system will include an analysis of the

vulnerabilities and the inclusion of protective mechanisms that might be employed when a

threat is detected. The design must provide for capabilities to recognize and handle

different kinds of threats in various contexts more easily, thereby reducing the burden on

administrators.

Beside of aforementioned characteristics, two additional sub-characteristics can be

enumerated for an autonomic system, namely:

1. Reflexivity: An autonomic system must have detailed knowledge of its components,

current status, capabilities, limits, boundaries, interdependencies with other systems,

and available resources. Moreover, the system must be aware of its possible

configurations and how they affect particular nonfunctional requirements.

2. Adapting: At the core of the complexity problem addressed by the Autonomic

Computing initiative is the problem of evaluating complex tradeoffs to make informed

decisions. Most of the characteristics listed above are founded on the ability of an

947

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

autonomic system to monitor its performance and its environment and respond to

changes by switching to a different behavior. At the core of this ability is a control loop.

Sensors observe an activity of a controlled process, a controller component decides

what has to be done, and then the controller component executes the required

operations through a set of actuators. The adaptive mechanisms to be explored will be

inspired by work on machine learning, multi-agent systems, and control theory.

5. 5. 5. 5. TOWARD AUTONOMIC COMPUTING ARCHITECTURETOWARD AUTONOMIC COMPUTING ARCHITECTURETOWARD AUTONOMIC COMPUTING ARCHITECTURETOWARD AUTONOMIC COMPUTING ARCHITECTURE

The goal of an autonomic computing architecture is to reduce intervention and carry out

administrative functions according to predefined policies. Moving from manual to

autonomic systems is introduced in a step-by-step manner. Most existing systems cannot be

redesigned and redeveloped from scratch to engineer autonomic capabilities into them.

Rather, self-management capabilities have to be added gradually and incrementally—one

component (such as, architecture, subsystem, or service) at a time. With the proliferation

of autonomic components, users will impose increasingly more demands with respect to

functional and nonfunctional requirements for autonomicity. Thus, the process of

equipping software systems with autonomic technology will be evolutionary rather than

revolutionary.

The path to Autonomic Computing consists of five levels: basic, managed, predictive,

adaptive, and autonomic. They are explained in the following [21]:

1. Basic Level: At this level, each system element is managed by IT professionals.

Configuring, optimizing, healing, and protecting IT components are performed

manually.

2. Managed Level: At this level, system management technologies can be used to collect

information from different systems. It helps administrators to collect and analyze

information. Most analysis is done by IT professionals. This is the starting point of

automation of IT tasks.

3. Predictive Level: At this level, individual components monitor themselves, analyze

changes, and offer advices. Therefore, dependency on persons is reduced and decision

making is improved.

4. Adaptive Level: At this level, IT components can individually or group wise monitor,

analyze operations, and offer advices with minimal human intervention.

5. Autonomic Level: At this level, system operations are managed by business policies

established by the administrator. In fact, business policy drives overall IT management,

while at adaptive level; there is an interaction between human and system.

Figure 4 defined five levels of maturity to characterize the gradual injection of autonomicity

into software systems

948

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Figure 4: IncreFigure 4: IncreFigure 4: IncreFigure 4: Increasing Autonomic Functionalityasing Autonomic Functionalityasing Autonomic Functionalityasing Autonomic Functionality

6.6.6.6. EXAMPLES OF AUTONOMIC SYSTEMS AND APPLICATIONSEXAMPLES OF AUTONOMIC SYSTEMS AND APPLICATIONSEXAMPLES OF AUTONOMIC SYSTEMS AND APPLICATIONSEXAMPLES OF AUTONOMIC SYSTEMS AND APPLICATIONS

There have been a number of research efforts in both academia and industry to

develop autonomic systems and applications as identified by [22]. A few sample projects

deployed in the time period starting from 2001 are:

OceanStore [23, 24], which is a global, consistent, highly-available persistent data storage

system that supports self-healing, self-optimization, self-configuration, self-protection, policy

based caching, routing substrate adaptation, autonomic replication, continuous monitoring,

testing, and repair.

Storage Tank [25], is a multi-platform, universally accessible storage management system. It

supports self-optimization, self-healing, policy based storage and data management, server

redirection and log-based recovery.

Oceano [26], facilitates cost effective scalable management of computing resources for

software farms. In terms of autonomic behaviour, it handles self-optimization, self-

awareness, autonomic demand distribution, and constant component monitoring.

AutoAdmin [27], sets out to reduce Total Cost of Ownership (TCO) through self-tuning,

self-administration by usage tracking, index tuning and recommendations based on

workload.

Q-Fabric [28], provides system support for continuous online management through self-

organization. It features continuous online quality management through ‘customizability’ of

each application’s Quality of Service (QoS).

Autonomia [29] presents one of the initial architectures implementing self-configuring and

self-healing characteristics. It introduces an Autonomic Middleware service (AMS)

comprising of a component and resource repository, and Fault and Security Handlers.

Focale [30] introduces a semantically rich architecture for orchestrating the behavior of

heterogeneous and distributed computing elements with support of ontologies, policies and

knowledge engineering.

949

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

Paws [31] presents an adaptive framework based on web-services. A BPEL (Business

Process Execution Language) editor is provided, with which the business process and the

constraints in terms of QoS can be defined.

Sassy [32] provides a framework for systems adapting to requirements by selecting services

from service providers, that satisfy the utility function. SASSY introduces SAS (Service

Activity Schemas), a visual requirements specification language, which describes the

required services and activities from the domain ontology, and SSS (Service Sequence

Scenarios), which defines the OS requirements. SASSY works in the framework of an

SOA architecture to provide the self-architecting framework.

IPAutomata [33] is a part of IPCenter, IPSoft’s commercial product for enterprise wide

service delivery, an autonomic component managing multiple intelligent agents.

Applications of autonomic computing in engineering applications, such as autonomic

(urban) traffic systems, autonomic industrial/residential building systems, autonomic

industrial process systems, or autonomic manufacturing systems will increasingly come to

the fore. As would be expected, early adaptors have come from within computing, for

instance, efforts to add autonomic capabilities to instant messaging, spam detection, load

balancing and middleware have been reported [34].

Database systems in particular, have been an early success within the AC initiative [35] due

to the evolution of the DBMS towards more complex features and a resulting move

towards self-tuning. SMART DB2 [36] provides for the reduction of human intervention

and cost for DB2 through such self-management systems as self-optimization, self-

configuration, autonomic index determination, disaster recovery, continuous monitoring of

DB2’s health and alerting the DBA.

7. 7. 7. 7. PROMISES OF AUTONOMIC COMPUTING TO FUTURE APPLICATIONSPROMISES OF AUTONOMIC COMPUTING TO FUTURE APPLICATIONSPROMISES OF AUTONOMIC COMPUTING TO FUTURE APPLICATIONSPROMISES OF AUTONOMIC COMPUTING TO FUTURE APPLICATIONS

Over the past century there have been many profound technological, economic and social

transformations. Currently, full development and diffusion of innovations such as software

systems, telephones and automobiles have accompanied the emergence of mass

production, mass consumption and mass government. There are many who, facing the

next century, wonder if it will be possible and/or desirable to continue along the path of

such prodigious change. Some worry about the capacity, both technological and social, to

continue advancing and inventing new tools, new products and new ways of organizing

everyday work and home life. Others worry that the ongoing transition costs may be too

high, or that the risks to cherished traditions or the threats to environmental sustainability

will, singly or together, be too great to bear. Preservation versus dynamism, incrementalism

versus radicalism, these are the polar extremes that, unsurprisingly, haunt many end-of-the-

century, future-of-the-millennium debates.

Against this background that IT is called upon to deliver services at greater speed and

minimum cost. These services were integrated into the existing infrastructures which lead

to increase in the complexity. This complexity has in turn increased the cost and errors of

managing IT infrastructures. Also, the needed personals to manage these systems are

expensive. Autonomic computing evolved as a discipline to create software systems and

applications that is self-manage.

950

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

The goal is to overcome the complexities and inability to maintain current and emerging

systems effectively. So, by embedding autonomic principles into existing system

architecture, we can move one step further to achieving success.

Table 1 shows four aspects of self-management as they are now and would be with

autonomic computing. It can be deduce that autonomic computing would be of great

benefit in time to come since autonomic computing will aid computing systems to

autonomously deal with unpredictable change, so as to fulfill the objectives they were

constructed for, as well as conceals the complexity of design and management in system

equipment.

TABLE 1: CONTEMPORARY VERSUS AUTONOMIC COMPUTINGTABLE 1: CONTEMPORARY VERSUS AUTONOMIC COMPUTINGTABLE 1: CONTEMPORARY VERSUS AUTONOMIC COMPUTINGTABLE 1: CONTEMPORARY VERSUS AUTONOMIC COMPUTING....

Concept Concept Concept Concept Current computingCurrent computingCurrent computingCurrent computing Autonomic computingAutonomic computingAutonomic computingAutonomic computing

Self-configuration Corporate data centers have

multiple vendors and platforms.

Installing, configuring, and

integrating systems is time

consuming and error prone.

Automated configuration of

components and systems

follows high-level policies. Rest

of system adjusts automatically

and seamlessly.

Self-optimization Systems have hundreds of

manually set, nonlinear tuning

parameters, and their number

increases with each release.

Components and systems

continually seek opportunities

to improve their own

performance and efficiency.

Self-healing Problem determination in large,

complex systems can take a

team of programmers weeks.

System automatically detects,

diagnoses, and repairs localized

software and hardware

problems.

Self-protection Detection of and recovery from

attacks and cascading failures is

manual.

System automatically defends

against malicious attacks or

cascading failures. It uses early

warning to anticipate and

prevent system wide failures.

Moreover, Software has never been as important as today and its impact on life, work and

society at large is growing at an impressive rate. We are in the flow of a software-induced

transformation of nearly all aspects of our way of life and work. The dependence on

software has become almost total. Malfunctions and unavailability may threaten vital areas

of our society, life and work at any time.

With regards to its effects on people, organizations and society, Autonomic computing was

conceived to lessen the spiraling demands for skilled IT resources, reduce complexity and

to drive computing into a new era that may better exploit its potential, to support higher

order thinking and decision making. Immediate benefits will include reduced dependence

on human intervention to maintain complex systems accompanied by a substantial

decrease in costs. Long-term benefits will allow individuals, organizations and businesses to

collaborate on complex problem solving.

951

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

This is to say that Autonomic principles are key enablers for organizations seeking to take

advantages of current technologies since they help mask complexity by simplifying

infrastructure management. As such, Autonomic Computing has been identified by as a

key area [22, 37, 38] and research is underway to utilize it in addition to autonomy [39].

8. 8. 8. 8. MERITS OF AUTONOMIC COMPUTINGMERITS OF AUTONOMIC COMPUTINGMERITS OF AUTONOMIC COMPUTINGMERITS OF AUTONOMIC COMPUTING

IT related benefits include:

1. Simplified user experience through a more responsive, real-time system.

2. Cost-savings – scale to use.

3. Increase stability of IT through automation.

4. Provides server consolidation to maximize system availability, minimize cost and

human effort to manage large server farms.

5. Scale power, storage and costs that optimize usage across both hardware and

software.

6. High security system. Less system or network errors due to self-healing.

7. Full use of idle processing power, including home PC’s, through networked

system.

9. 9. 9. 9. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

In a distributed computing system, users and multiple computers are interconnected in an

open, transparent, and geographical large-scale system. Therefore, development and

management of these systems are master problems for IT professionals. IBM proposed

Autonomic Computing Systems as a solution. Autonomic Computing Systems manage

themselves. The prime purpose is to overcome the complexities and inability to maintain

current and emerging systems effectively. Various benefits have been put forward for the

adoption of autonomous computing principle including Self-healing, Self-optimizing, Self-

protecting and Self-configuring. Autonomic capabilities are critical to businesses with large

and complex IT environments, those using Web Services and/or Service Oriented

Architecture (SOA) models, and those that leverage e-business or e-commerce. They are

also key enablers for smaller businesses seeking to take advantage of current technologies,

because they help mask complexity by simplifying infrastructure management.

The future for autonomic computing is bright. The big companies in computers are

throwing lots of resources into this. The autonomic concept has been adopted by today’s

leading vendors and incorporated into their products. Aware that success is tied to

interoperability, many today are participating in the standards development necessary to

provide the foundation for self-managing technological ecosystems, and are integrating

standards into their technology. So, by embedding autonomic principles into existing

system architecture, we can move one step further to achieving success.

952

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

REFERENCESREFERENCESREFERENCESREFERENCES

[1] Salehie, M. and Tahvildari, L. (2005). “Autonomic Computing: Emerging Trends

and open Problems” DEAS‟05 St Louis, Missouri USA. ACM SIGSOFT

Software Engineering Notes. 30 (4), 1- 7.

[2] Parashar, M. and Hariri, S. (2005). Autonomic computing: An overview. Hot
Topics, Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg

2005. Pp. 247-259. Available @ www.caip.rutgers.edu/TASSL/Papers/automate-

upp-overview-05.pdf.

[3] Ganek, A. (2006). Overview of Autonomic Computing: Origins, Evolution,

Direction, in Autonomic Computing – Concepts, Infrastructure, and Applications.

[4] Kluth, A. (2004). “Survey: Information Technology. Make It Simple.” The

Economist. http://www.economist.com/surveys /showsurvey.cfm?issue=20041030

[5] Müller, H. A.; Brien, L.; Klein, M. and Wood, B. (2006). Autonomic Computing.

Carnegie Mellon University, Technical Note CMU/SEI-2006-TN-006, 2006.

Downloadable from:http://www.sei.cmu.edu/reports/06tn006.pdf [last accessed

14.1.2016]

[6] Hariri, S. (2004). Autonomic computing: research challenges and opportunities. In

Proceedings of IEEE conference on Pervasive Services (ICPS), page 7, 2004.

[7] Patterson, D. and et al. (200).Recovery oriented computing (roc): Motivation,

definition, techniques, and case studies. UC Berkeley CS Tech. Rep. UCB/CSD-

02-1175, March 2002.

[8] Hariri, S. and Parashar. M. (2005). Handbook of Bioinspired Algorithms and

Applications, chapter The Foundations of Autonomic Computing. CRC Press

LLC, 2005.

[9] Foote, B. and Yoder, J (2000). “Big Ball of Mud”, in Pattern Languages of

Program Design 4, ed. N. Harrison, B. Foote, H. Rohnert, Addison-Wesley,

2000.

[10] Horn, P. (2001). Senior Vice-President, IBM Research. Autonomic Computing:

IBM's Perspective on the State of Information Technology, IBM Research,

October 2001. http://www-1.ibm.com/industries/government/doc/

content/bin/auto.pdf.

[11] Mittal, P., Singhal, A., and Bansal, A. (2014). A Study on Architecture of

Autonomic Computing-Self Managed Systems. International Journal of Computer

Applications 92: (6), 6 - 9.

[12] IBM, (2006) “An architectural blueprint for autonomic computing,

4
th

edition.”http://www.01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_

White_Paper_4th.pdf, June 2006.

[13] White, S.; Hanson, J.; Whalley, I.; Chess, D., and Kephart, J. (2004). An

architectural approach to autonomic computing. In Proceedings International

Conference on Autonomic Computing (ICAC’04), NewYork, USA, pages 2–9,

May 2004.

[14] Vassev, E and Hinchey, M. (2011). “Knowledge Representation and Awareness in

Autonomic Service-Component Ensembles-State of the Art”, in proc. Int. Symp.

On O/C/S-Oriented RT Dist. Comp. Workshops, Newport Beach, CA, USA

2011

953

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

[15] Ayala, I. (2012). Self-StarMAS: A Multi-Agent System for the Self Management of

AAL Applications, Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing. 2012.

[16] Nami, M. R. and Bertals, K. (2006). A Survey of Autonomic Computing Systems.

Computer Engineering Laboratory, Delft University of Technology. Available @

www.ce-
publications.et.tudelft.nl/.../610_a_survey_of_autonomic_computing_systems.pdf

[17] Kephart, J. O. and Chess, D. M. (2003). “The Vision of Autonomic Computing.”

IEEE Computer 36, 1: 41-50. N

[18] Melcher, B and Mitchell, B (2004). Towards an autonomic framework: Self-

configuring network services and developing autonomic applications. Intel

Technical Journal, 08:279{290, Nov. 2004.

[19] Walsh, W.; Tesauro, G.; Kephart, J and Das, R. (2004). Utility functions in

autonomic systems. In Proceedings of IEEE conference on

[20] Ganek, A. G and Corbi, T. A.(2003). The dawning of the autonomic computing

era. IBM Systems Journal, Special Issue on Autonomic Computing, 42:5{18, 2003.

[21] Murch. R. (2004). Autonomic Computing. In Prentice-Hall, pages 0–20:25–40,

October 2004.

[22] Sterritt, R., Parashar, M.; Tianfield, H.; Unland, R. (2005). A concise introduction

to autonomic computing. Advanced Engineering Informatics 19 (2005) 181–187

[23] Kubiatowicz, J. (2001). ‘OceanStore: global-scale persistent storage’ Stanford

Seminar Series, Stanford University,

http://oceanstore.cs.berkeley.edu/publications/talks/StanfordOceanStore.pdf;

Spring 2001.

[24] Berkeley, U. C. (2002). Computer science division. Hildrum K. ‘The OceanStore

Project’, project overview. http://oceanstore.cs.berkeley.edu/info/overview.html,

July 8 2002. Project Page.

[25] Menon, J., Pease, D., Rees, R., Duyanovich, L., and Hillsberg B. (2003). IBM

storage tank-A heterogeneous scalable SAN file system. IBM Syst J 2003;

42(2):250–67.

[26] IBM Research. The oceano project. http://www.research.ibm.com/oceanoproject/.

IBM Corp.

[27] Narasayya V. (2002). AutoAdmin: towards self-tuning databases; November 13

2002. Guest Lecture at Stanford University.

[28] Poellabauer C. (2002). Q-fabric—system support for continuous online quality

management; 2002 http://www.cc.gatech.edu/systems/projects/ELinux/qfabric.html

[29] Dong, X., Hariri, S. and Xue, L. (2003) "AUTONOMIA: An Autonomic

Computing Environment," 2003.

[30] Strassner, J. C., Agoulmine, N. and Lehtihet, E (2006). "FOCALE –A Novel

Autonomic Networking Architecture," 2006.

[31] Ardagna, D., Comuzzi, M. and Mussi, E. (2007). "PAWS: A Framework for

Executing Adaptive Web-Service Processes," 2007.

[32] Menascé, A., Gomaa, S., Malek, H. and Sousa, P (2011). "SASSY: A Framework

for Self-Architecting," IEEE Software, pp. 78-85, November 2011.

[33] IPSOFT (2012). February 2012. [Online]. Available: http://www.ipsoft.com/

[34] Kaiser G, Parekh J, Gross P, and Valetto G. (2003). Kinesthetics eXtreme: an

external infrastructure for monitoring distributed legacy systems Proceedings of the

autonomic computing workshop, fifth international workshop on active

middleware services (AMS 2003), Seattle, WA; 2003. p. 22–30.

954

SMART- SMART-iSTEAMS Multidisciplinary Conference

Ogwuashi-uku, Delta State, Nigeria, February 2018

[35] Diao Y, Eskesen F, Froehlich S, Hellerstein J, Spainhower F, and Surendra

M.(2003). Generic online optimization of multiple configuration parameters with

application to a database server. Proceedings of the 14th IFIP/IEEE workshop on

distributed systems: operations and management (DSOM), LNCS 2867. Berlin:

Springer; 2003. p.3–15

[36] Lohman, M., and Lightstone, S. (2002). SMART: making DB2 (More) autonomic.

In: VLDB 28th international conference on very large data bases, Kowloon

Shangri-La Hotel, Hong Kong, China; August 20–23 2002.

[37] Clancy, D. J. (2002). NASA challenges in autonomic computing, Almaden

Institute 2002, San Jose, CA: IBM Almaden Research Center; April 10, 2002.

[38] Sterritt, R. (2002). Towards autonomic computing: effective event management.

Proceedings of 27th annual IEEE/NASA software engineering workshop (SEW),

Maryland, USA, December 3–5.: IEEE Computer Society; 2002. p. 40–7.

[39] Truszkowski W, Rash J, Rouff C, Hinchey M. (2004). Asteroid exploration with

autonomic systems. Proceedings of IEEE workshop on the engineering of

autonomic systems (EASe) at the 11th annual IEEE international conference and

workshop on the engineering of computer based systems (ECBS 2004), Brno,

Czech Republic; 24–27 May 2004. p. 484–90.

